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Let us consider the differential equation - y" + q(t)y = Ay
on an interval with the right end at ®. It has been shown [1] that

when gq(t) is real valued; under certain conditions t
equation does not possess two linearly independent scluticns, bcth
square summable toward . ( JQ]-IE dt < »). This is known as the
classical limit point case of Hermann Weyl [6], its negaticn - the
existence of two square summable solutions - being the limit circle
case. The reason for these names is readily apparent from the theory
[6]. i
While the correspondence between the number of square summable '
solutions and the limit point - circle cases is not quite so precise
when q(t) = qy(t) +1 q,(t), where q,(t) and q,(t) are real
valued and ‘qg(t) # 0, a great many results can be extended. (See
[2], [3], [4], and [5]). The purpose of this paper is to show that
when q,(t) # 0, if q,(t) satisfies the same conditions stated for
g(t) when gq(t) is real valued, then the number of square summable

solutions toward o can still be restricted in the same way.

- Theorem. Suppose there exists a positive, differentiali function

. [}
M(t) satisfying M(t) 2 M, > 0, q,(t) 2 - k; M(t) for some constant

==}
Ky M7 (t) M~ 3/E(t)l < k, for some constant ki, j M l/g(t) dt = w. *
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Then the differential egquation - y' + (ql(t) + i qg(t))y = Ay

does not possess two linearly independent solutions, sguare Summable

toward «.

Proof. It has been shown ([1] or [2]) that if two square
summable solutions exist for any value of A, then twb exist for all
values of A. Thus, without loss of generality, we can choose
AN = iv where v 1is real. | 7

Let X satisfy - X" + (ql(t) +1 g,(t))X = ivX be square
summable toward «. We then have
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Integrating the left side by parts,
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Taking real part of this equation, we have
t !
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Using Cauchy's inequality on the second term of the right side.
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Letting H{t) = f T dt,
Y
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Chocse ¢ sufficiently large so that
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for scme k,. If 1im H{t) = », then eventually-i— ‘X[g > HT
Thus lez(t) is increasing, and X £ L°(0, »). Thus H{t) 1is
bounded.

Now let 6, @ Dbe solutions square summable toward o.

Assume W[6, 7] =6 g’ - g6/ = 1 ftor all +. Then
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The left is summable by Schwarz's inequality. The right is nct,
giving us a ccntradiction.
We are now in a position to begin to characterize the rcles of

q;(t) and q,(t). [2] shows that if 1lim q,(t) = y and

tmo0
1im qe(t) = 8§, then with the exception of a countable number of
é;Zenvalues, the 1ines A =i y and A =i § contain the spectrum
of the operator L defined by Ly = -y" +q(t)y. On the ctner

hand ql(t) determines the nature of the spectrum. If twe squars

summable solutions of - y" + q(t)y = Ay ~exist toward =, the

spectyum on A = i censists of a countable number of elgenvaliuss.
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It only ore exists, the spectrum is still wunspecified
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1f two square summable solutlions exist toward - =, ther the gpe

n A =1y¢% consists of a countable number of eigervalues. If criy

O

unspecified. (See [31)
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